
TOOTH LOAD COMPONENTS

CUSTOMER

CUSTOMER NAME

PROJECT CUSTOMER PROJECT

When selecting bearings, it is necessary to know the direction and magnitude of the tooth forces so that bearing relations may be determined. The tables below convey both unit- and operational-tooth loads for:

F_x - axial force acting on pinion

F_v - separating force acting on pinion

F₇ - tangential force acting on pinion

Hi-Lo side forces are shown acting on the gear.

Forces act on the gear tooth at mid-tooth depth and at mid-face on center distance.

Forces on the pinion are in the reverse direction from those shown.

Operating Speed (rpm)

5,000

Ш -1.200-0.809 -0.343

	LO	
$\mathbf{F}_{\mathbf{x}}$	1.198	
$\mathbf{F}_{\mathbf{y}}$	-0.292	
$\mathbf{F}_{\mathbf{z}}$	0.405	

pounds per in-lb of output torque

Tooth Load Component

Torque @ Operating Speed (in-lb)

Tooth Load @ Operating Speed & Torque

	LO	HI			
\mathbf{F}_{x}	74.3	-74.4			
$\mathbf{F}_{\mathbf{y}}$	-18.1	-50.2			
$\mathbf{F}_{\mathbf{z}}$	25.1	-21.3			
pounds					

CUSTOMER	CUSTOMER NAME				
PROJECT	CUSTOMER	STOMER PROJECT			
GEAR O.D.	1.875	RH / LH	RH		
RATIO (TO 1)	31	GEAR MATERIAL	STEEL		
GEAR TYPE	HELICON	CUTTING TOOL	52-417		

